AIAA JOURNAL
Vol. 31, No. 4, April 1993

Coupling Between a Supersonic Boundary Layer
and a Flexible Surface
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The coupling between a two-dimensional, supersonic, laminar boundary layer and a flexible surface is studied
using direct numerical computations of the Navier-Stokes equations coupled with the plate equation. The
flexible surface is forced to vibrate by plane acoustic waves at normal incidence emanated by a sound source
located on the side of the flexible surface opposite to the boundary layer. The effect of the source excitation
frequency on the surface vibration and boundary-layer stability is analyzed. We find that, for frequencies near
the fifth natural frequency of the surface or lower, large disturbances are introduced in the boundary layer that
may alter its stability characteristics. The interaction between a stable two-dimensional disturbance of Tollmien-
Schlichting (TS) type with the vibrating surface is also studied. We find that the disturbance level is higher over
the vibrating flexible surface than that obtained when the surface is rigid, which indicates a strong coupling
between flow and structure. However, in the absence of the sound source, the disturbance levels over the rigid
and flexible surfaces are identical. This result is due to the high frequency of the TS disturbance that does not

couple with the flexible surface.

Introduction

N recent years, the demand for developing a high-speed

civil transport has increased. This has led to an increase in
research activity on compressible supersonic flows, in particu-
lar on the evolution of unsteady disturbances in a supersonic
laminar boundary layer. One class of unsteady disturbances
that has received considerable attention is instability waves in
a boundary layer, i.e., eigenmodes of the compressible Orr-
Sommerfeld equations obtained via linearization around a
parallel flow. When these waves are unstable, small distur-
bances can evolve to large nonlinear disturbances as they
propagate downstream in the boundary layer, leading to tran-
sition from laminar to turbulent flow.

The linear stability of compressible laminar boundary layers
has been studied extensively for both subsonic and supersonic
flow regimes. These studies have led to the well-known parti-
tion of instabilities into two different classes: the viscosity-
dominated class known as the vorticity or first mode, which is
similar to the Tollmien-Schlichting (TS) type waves found in
low-speed flows, and the acoustic or higher modes.!-? At high
Mach numbers (>3, for adiabatic conditions), it is found that
the dominant modes of instability are the acoustic ones, spe-
cifically the first acoustic mode known as the second mode.
The linear stability of a two-dimensional flat plate boundary
layer including both the vorticity and the acoustic modes has
been studied extensively by Mack. +6
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Most of the studies on supersonic boundary-layer stability
were performed for flows over rigid surfaces. However, most
aircraft structures are made up of flexible surfaces; therefore
it is very important to study the interaction (if any) between
such structures and unsteady disturbances in the boundary
layer. It is known that the unsteady pressure field in the
boundary layer can induce significant vibrations of the flexible
surface. The vibrating surface can radiate sound over a broad
range of frequencies. These acoustic disturbances can 1) excite
TS-type waves in the boundary layer and 2) possibly change
the stability characteristics so as to enhance the instability of
these waves. In turn the TS-type waves can excite vibrations of
the flexible surface leading to a positive feedback that may
promote an earlier transition. It is therefore important to
determine the coupling between unsteady disturbances and a
vibrating surface.

In a previous paper’ we considered the behavior of unstable,
second-mode disturbances in a high-speed boundary layer
over a flexible surface. It was shown that, although the distur-
bances were unstable and exhibited substantial growth over
the surface, there was little excitation of the flexible surface.
This was due to the frequency range of the second-mode
disturbances, which were too high to effectively couple with
the flexible surface.

In this paper we consider the coupling of a flexible surface
with two-dimensional first-mode (i.e., TS-type) disturbances.
For the Mach number and Reynolds number considered in this
paper, the two-dimensional disturbance exhibits a very small
growth near the inflow and then decays with the downstream
distance. Even though the disturbance frequency is an order of
magnitude lower than that considered previously,” we find
that the two-dimensional disturbance does not effectively cou-
ple with the flexible surface and that there are no significant
differences between the evolution of the disturbance over a
flexible or rigid surface.

However, a stronger coupling of the flexible surface with
the boundary layer can be obtained when the surface is forced
by an acoustic disturbance located on the side of the flexible
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surface opposite to the boundary layer. Acoustic excitation of
this sort can lead to large disturbances in the boundary layer.
The effectiveness of the flexible surface in transmitting acous-
tic energy into the boundary layer is highly sensitive to the
frequency of the acoustic excitation and the parameters of the
flexible surface, in particular the damping. At the present time
the computational model is limited to two dimensions and to
infinitesimal surface vibrations. However, within these limita-
tions there are indications that the disturbances introduced by
the vibrating surface can serve to destabilize the flowfield and
that surface vibration should be considered as a potentially
destabilizing mechanism that should be accounted for in sta-
bility studies.

The remainder of this paper is organized as follows: first the
mathematical model is presented, then the numerical scheme
used to solve the set of partial differential equations is de-
scribed, and finally the numerical results and conclusions are
presented.

Formulation of the Model

As shown in Fig. (1), three computational domains are
being considered: the flow region above the surface, the flex-
ible surface itself, and the no-flow region below the surface.
The governing equations in the supersonic flow region are the
two-dimensional, compressible, Navier-Stokes equations. In a
Cartesian coordinate system, x and y, these equations can be
written in conservation form as

Qt =F, x + Gy (l)
where Q is the vector (o, pu, pv, E)7, p the density, pu and pv
the x and y momenta, respectively, and E the total energy per

unit volume given by

E = Vapu? +v?) + pc, T 2

In Eq. (1), the functions F and G are

ou
pUr+p — 1y
F= PUV — Ty

U(E +p) ~ UTee — VTy — kT

oV
G- PUY — Ty G)
pv2i+p — 1y

V(E +p) ~ uty — vry, — &7,

where 7; are the components of the viscous stress tensor and «
is the thermal conductivity. In addition to Eq. (1), an ideal gas
state equation is used,

P =pRT @

where p is the pressure, p the density, R the gas constant, and
T the temperature. The viscosity is obtained from Suther-
land’s law

e, T3

= 5
[ T+ T )

with T} = 198.6°R, and ¢; = 3.66 x 10~7 Ns/(m?R*) for air.
The equation describing the motion of the flexible surface is
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Fig.1 Computational domains: a) rigid surface, b) flexible surface
without sound, c) flexible surface with sound.

where w is the plate transverse deflection, p, the mass per unit
volume of the plate, 4 the plate thickness, and v the physical
damping. In Eq. (6), D = Mh3/12(1 — »?) is the stiffness of the
plate, with M being the modulus of elasticity and » the Poisson
ratio of the plate material. The terms p* and p - are the
pressure fields in the flow and no-flow regions, respectively.
From the solution of the Navier-Stokes equations we obtain
p*t.Forp~, two cases are studied; first when a sound source
is used, we consider an imposed pressure field of the form,

P~ =py + ¢ sin(w?) @)

where ¢; and w; are the amplitude and frequency of the acous-
tic source, respectively. In the absence of the sound source, an
approximation to the solution of the wave equation

_ow
P~ =py —(pc) o 8

is used. This is similar to the approximation presented by
Miksis and Ting.® The variables p, and (oc); are the
freestream pressure, density, and speed of sound in the region
below the surface. A physical situation where Eq. (8) can be
used is that of flow over a fuselage surface, and Eq. (7) is a
simplification of flow over a vibrating flexible surface excited
by engine noise.  Since the geometry used is that of a flat
surface, the computations were limited to the case of small
deflections (order of the plate thickness). The coupling be-
tween the boundary layer and the plate is achieved by impos-
ing the vertical velocity of the plate to be one of the boundary
conditions for Navier-Stokes equations. Similarly, the surface
motion is driven by the pressure field in the boundary layer.

Method of Solution

The unsteady Navier-Stokes equations [Eq. (1)] are solved
using an explicit finite difference scheme. The scheme, which
is a generalization of MacCormack’s scheme obtained by
Gottlieb and Turkel,® is fourth order accurate on the convec-
tive terms, second order accurate on the diffusive terms, and
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second order accurate in time. The numerical scheme, applied
to a one-dimensional equation of the form

U =Fy ®

consists of a predictor step given by
.. A
ui =u,- +E(_7E+8E+]_Fl+2) (10)
followed by a corrector step of the form
utt il u +ul +£(7F-*—8F~' +F!_,) an
i i i 6Ax i i—1 i-2

In the previous equations, the subscript i denotes the spatial
grid point and the superscript # the time level. The fourth-or-
der accuracy is obtained by alternating the scheme just given
with its symmetric variant. To apply this scheme to a two-di-
mensional problem, the operator-splitting method is used. If
L, and L, denote the solution operators for the one-dimen-
sional x and y problems, then the solution to Eq. (1) is ob-
tained by

Q"2 =L L,L,L,Q" 12

Further details about the method and the advantage of fourth-
order schemes can be found in Bayliss et al.1%1!

The boundary conditions employed on the surface for the
Navier-Stokes equations are

u=v=0 T=T, (13)

over the rigid part of the surface, and

=0 =— T=T 14
U v at w ( )

over the flexible part of the surface.
The pressure boundary conditions are as follows: over the

rigid part of the surface the pressure is calculated using the.

normal momentum equation, and over the flexible part of the
surface a linear extrapolation from the interior of the domain
is used to find the pressure. We first update the pressure to the
new time level by integrating the Navier-Stokes equations and
using dw/9d¢ at the previous time level as a boundary condi-
tion; then using the new pressure field, we solve the plate
equation to update w.
The inflow conditions are given by

Oinsiow = Qo + & [¢(y)€i“’2’] (15)

where Q, is the steady-state solution corresponding to a mean
flow over a rigid surface, ® indicates the real part, ¢(») is the
first-mode disturbance eigenvector solution obtained from a
compressible stability code, for a given set of boundary-layer
parameters (boundary-layer profile and inflow Reynolds num-
ber),2 and w, and ¢, are the frequency and amplitude of the
inflow disturbance, respectively. The remaining inflow, out-
flow, and upper-boundary conditions are the same as in
Maestrello et al.!3
The plate equation is integrated using an implicit finite
difference method for structural dynamics developed by Hoff
and Pahl.!* The boundary conditions used to solve the plate
equation are those for a clamped plate
w=w,=0 at X =X, Xo+ L (16)
The problem of transient oscillations is common when try-
ing to solve the time-dependent structural equations. To elim-
inate the effects of this transient on the flowfield, the plate
equation is integrated to obtain a steady-state solution with

the acoustic excitation alone. To accelerate the convergence,
higher physical damping is used initially; then it is reduced to
the desired value progressively. The steady-state displacement,
velocity, and acceleration profiles are then used as inputs to
the Navier-Stokes calculations, which are then run to elimi-
nate the remaining transient. The time scales of the surface
vibration are long compared with the allowable time steps for
the Navier-Stokes solver; typically 5 x 10 ~3 s for the structure
and 10~ 7 for Navier-Stokes. Thus there are limits to the length
of time for which it is currently feasible to solve the equations
of the model. We believe that the data presented here repre-
sents an approximation to the steady-state surface response to
within the accuracy of the model.

Results and Discussion

Numerical experiments are carried out for a supersonic
laminar boundary layer with a freestream Mach number of
2.2, a Reynolds number per meter of 5.25 X 10°, and a total
temperature of 311 K. The properties of the flexible part of the
surface are assumed to be independent of position and are
stiffness D = 1.46 N - m, mass per unit area p,# = 2.26 kg/m?,
and physical damping v = 131.2 N - s/m3. The plate is 0.254 m
long and 78.7 um thick and is clamped between two rigid
surfaces. The first seven natural frequencies of the plate are
45, 122, 206, 396, 591, 826, and 1100 Hz. The dimensions of
the computational domain are 1.27 m in the downstream
distance and 0.0254 m in the vertical distance corresponding to
20 boundary-layer thicknesses. This large value of the vertical
distance is chosen to calculate the freestream radiated pressure
and has no effect on the numerical results. The number of
points used are 301 and 201 in the streamwise and vertical
directions, respectively. An exponential stretching is used in
the vertical distance to achieve good resolution in the
boundary layer.

The different configurations that we compute are shown in
Fig. 1: a rigid surface (Fig. 1a), a flexible surface clamped
between two rigid ones (Fig. 1b), and an acoustic source
placed below the flexible part of the surface (Fig. 1c). The
acoustic source emits plane waves at normal incidence to the
surface at different frequencies and with a constant sound
pressure level. Disturbances are introduced in the flowfield at
both the inflow boundary and by acoustic excitation of the
surface from below. A two-dimensional TS-type disturbance
is introduced at the inflow with a normalized amplitude in u of
0.08 of the freestream and a normalized frequency F = 2xfv/
U2 of 60 x 10~ corresponding to a dimensional frequency of
f=4500 Hz (w, =2xf). This frequency corresponds to the
least stable two-dimensional first mode. In the definition of F,
v is the kinematic viscosity, and U, is the freestream stream-
wise velocity. Based on linear stability theory, this disturbance
is expected to grow and then decay with increasing streamwise
distance. To follow the evolution of the disturbance down-
stream, the mass flux disturbance level in the streamwise direc-
tion (pu) is calculated. First, the streamwise mass flux fluctua-
tion in time is obtained by

(ou)’ = pu — <pu> 17

where <pu > is the computed mean obtained from integrat-
ing the data in time. The integration is performed over one
period of the sound source frequency. The disturbance level is
then calculated by computing the root mean square (rms) in
time of (ou)’ and then integrating in y,

ms = <(pu)'?>% (18)

G(x)= S (rms) dy 19)

Figure 2 shows the results of this calculation for a distur-
bance propagating over the rigid surface of Fig. 1a and the
vibrating surface of Fig. 1c. The various disturbances used are
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Fig.2 Comparison of streamwise mass flux disturbance level gener-
ated by the interaction of a two-dimensional disturbance with a rigid
surface and a vibrating flexible surface at different downstream loca-
tions.
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Fig. 3 Effect of sound source frequency on the streamwise mass flux
disturbance level at different downstream locations.

indicated in parentheses where f is the TS frequency (4500
Hz). We note that all three computations are graphically indis-
tinguishable upstream of the flexible surface. Over the rigid
surface the disturbance grows and then decays as predicted
from the linear stability theory. When a sound source emitting
plane acoustic waves at a frequency of f/4 is used to excite the
surface, the interaction between the TS disturbance and the
vibrating surface gives rise to a small increase in the distur-
bance level compared with the rigid surface case. As the fre-
quency of the sound source is reduced to f/8, the disturbance
level clearly departs from that obtained over a rigid surface.
The results indicate that excitation of sufficiently low fre-
quency can be effective in exciting substantial vibrations of the
flexible surface. These vibrations can significantly change the
resulting evolution of the unsteady disturbances in the flow-
field. In the absence of the sound source, the disturbance level
over the flexible surface is the same as that over a rigid
surface, indicating a weak coupling between the surface and
the disturbance.

The effect of sound source frequency was investigated in the
absence of the TS-type waves, and the results are shown in

Fig. 3. For the same sound pressure level of the acoustic
excitation, Fig. 3 shows that the disturbance level introduced
by the flexible surface increases as the frequency decreases.
For high-frequency excitation, the disturbance. level in the
boundary layer is nearly uniform over the flexible surface. As
the frequency is reduced, the disturbance level grows and is
concentrated near the leading edge of the flexible surface.
However, in all of the cases the disturbance level decays over
the trailing edge and downstream of the flexible surface.

To further explain the differences shown in Fig. 2 between
the f/4 and f/8 frequencies, a comparison of the disturbance
level obtained for a rigid surface, a flexible surface excited by
sound alone, and a flexible surface excited by a combination
of a TS-type wave and sound was made. For a sound source
frequency of f/4, the disturbance level due to the sound
source alone is everywhere less than that of the TS-type distur-
bance over the rigid surface. Therefore, the level of the com-
bined disturbance over the flexible surface is only slightly
higher than that of a rigid surface as is shown in Fig. 4a.
However, when the frequency of the sound source is reduced
to f/8 the level of the disturbance generated by the vibrating
surface is higher than that of the TS-type disturbance over the
rigid surface. This results in a higher level of the combined
disturbances over the flexible surface, Fig. 4b. It is interestin%
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Fig.4 Comparison of disturbance levels generated by TS-type waves
over a rigid surface to that generated by a vibrating flexible surface
(no TS waves) and to that generated by the interaction of the TS waves
with the vibrating surface: a) sound source frequency of f/4, b) sound
source frequency of f/8.
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to note that near the leading edge of the flexible surface the
level of the combined disturbances is higher than that of the
sound source alone; however, near the trailing edge the two
curves coincide. This is an indication that the two disturbances
do not simply add up but that there are regions of constructive
and destructive interference between the two waves.

Figure 5 shows the instantaneous pressure distribution in
the flowfield over the rigid and flexible surfaces. The pressure
distribution over the rigid surface is generated by the instabil-
ity waves, Fig. 5a. However, when the same disturbance prop-
agates over a vibrating flexible surface, it interacts with the
pressure disturbance radiated by the surface. Outside the
boundary layer, the radiated pressure curves in the direction
of the flow and propagates along the Mach line (at a Mach
angle of 27 deg). Figure 5b shows the interaction between
these two waves when the frequency of the acoustic source is
f/4. This excitation frequency (1125 Hz) is near the seventh
natural frequency of the surface, and therefore its response
and near-field radiation patterns are dominated by the seventh

Instability wave

Radiated pressure
from the flexible surface

=

I(;— Fexible

_>l Flow —>»

b)
from the flexible surface
T 5
Iref

B

=
‘(—- Flexible ——)l Fiow >
<) 3
x/1
ref

Fig. 5 Instantaneous pressure distribution in the flowfield: a) TS-
type waves over a rigid surface, b) TS-type waves over a vibrating
flexible surface, sound source frequency f/4, c) sound source fre-
quency f/8.
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Fig. 6 Comparison of instantaneous velocity profiles at the center of
a rigid surface and a vibrating flexible surface.
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Fig. 7 Time variation of the velocity profile at the center of the

vibrating flexible surface, sound source frequency f/8 (T'is the oscilla-
tion period).

mode. These seventh-mode patterns are shown in the pressure
distribution of Fig. 5b. Decreasing the sound source frequency
to f/8 (563 Hz) leads to the excitation of lower modes on the
surface. The pressure field shown by Fig. 5c corresponds to
that radiated by a third mode. The increase in vibration level
and the mode shape of the flexible surface result in greater
coupling between flow and structure, which explains the in-
crease in disturbance level for the f/8 case. One should note
that Figs. 5b and Sc show only a small fraction of a wave-
length of the acoustic wave radiated by the surface because of
the small vertical dimension (0.0254 m) compared with the
acoustic wavelength (0.61 m for f/8).

Figure 6 shows a comparison of the instantaneous velocity
profiles at the center of the flexible and rigid surfaces for the
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Fig. 8 Instantaneous vorticity contours in the flowfield generated by
TS waves: a) over a rigid surface (a vibrating flexible surface with
sound source frequency f/8), b) surface moving upward, c) surface
moving downward.

three cases of Fig. 2. When the frequency of the acoustic
source is f/8, the velocity profile has an inflection point that
suggests a more unstable flowfield (inflectional instability) as
compared with the other two profiles. The varidtion of the
velocity profile with time for the case when the frequency of
the acoustic source is f/8 is shown in Fig. 7. As the surface
motion goes through orne cycle (based on f/8, period T), the
velocity profile varies between the upper and lower profiles.
The change in the velocity profile leads to a change in
boundary-layer thickness. A thicker boundary layer is associ-
ated with the upper, less stable profile whereas a thinner
boundary layer is obtadined for the lower profile. This result
indicates that the flexible surface acts like a piston, with
blowing and suction phases.

The vorticity contours of the flowfield generated by the TS
disturbance over the rigid surface are shown in Fig. 8a, and
those generated by the interaction of the TS disturbances with
a vibrating flexible surface excited by a sound source of fre-
quency f/8 are shown on Figs. 8b and 8c. As the flexible
surface moves upward, the vorticity contours cluster near the
leading edge of the flexible surface indicating an increase in
disturbarice level in that region, Fig. 8b, which is in agreement
with Figs. 3 and 4. In addition, the vorticity is lifted away
from the wall, leading to an increase in boundary-layer thick-
ness. Near the leading edge of the flexible surface, there are
indications of possible vortex roll up, which can be a precursor

to transition. When the surface is moving downward, the
vorticity contours are concentrated near the flexible surface,
Fig. 8c. The boundary layer becomes thinner, and there is no
indication of vortex roll up.

Conclusions

Based on the results presented here, the following conclu-
sions can be made.

1) The coupling between TS-type waves and a flexible
surface is not significant. This result is caused by the fact that
the frequencies of the TS-type waves are too high to effectively
excite the surface.

2) Acoustic excitation of the flexible surface can effec-
tively excite vibrations of the surface, provided the frequency
is sufficiently low (for the given set of structural parameters).
In this case, the resulting surface vibration can significantly
enhance the level of unsteady disturbances in the flow and
change the nature of the flowfield. In particular inflection
points can develop in the velocity profile and the incipient
formation of vortex rolls can be seen.

3) The effect of the surface vibrations can be transmitted
outside of the boundary layer as acoustic radiation.
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